Logo
Unionpedia
Komunikacja
pobierz z Google Play
Nowy! Pobierz Unionpedia na urządzeniu z systemem Android™!
Zainstaluj
Szybszy dostęp niż przeglądarce!
 

Kombinacja afiniczna

Indeks Kombinacja afiniczna

Kombinacja afiniczna – szczególny przypadek kombinacji liniowej w przestrzeniach liniowych, mający zastosowania przede wszystkim w przestrzeniach afinicznych, a więc i euklidesowych; z tego względu istotne w geometrii euklidesowej.

13 kontakty: Ciało (matematyka), Geometria afiniczna, Geometria euklidesowa, Kombinacja liniowa, Kombinacja stożkowa, Kombinacja wypukła, Otoczka wypukła, Przekształcenie afiniczne, Przestrzeń afiniczna, Przestrzeń euklidesowa, Przestrzeń liniowa, Punkt stały, Wektor.

Ciało (matematyka)

klasa właściwa spełniajątylko niestandardową, poszerzonądefinicję ciała. liniowo. liczb rzeczywistych liczb konstruowalnych. Liczby zespolone to inny przykład ciała. Zasadnicze twierdzenie algebry mówi, że jest to ciało algebraicznie domknięte. ciele skończonym, konkretniej dwuelementowym. Ciało – typ struktury algebraicznej z dwoma działaniami; krótko definiowany jako przemienny pierścień z dzieleniem lub dziedzina całkowitości z odwracalnościąelementów.

Nowy!!: Kombinacja afiniczna i Ciało (matematyka) · Zobacz więcej »

Geometria afiniczna

Geometria afiniczna – geometria oparta na pierwszym, drugim i piątym aksjomatach Euklidesa. Trzeci i czwarty aksjomat Euklidesa nie mająznaczenia, bo w geometrii tej nie rozpatruje się okręgów i nie mierzy się kątów ani odcinków (iloczyn skalarny nie jest pojęciem afinicznym). Proste równoległe natomiast odgrywająw niej podstawowąrolę. Obecnie, po opublikowaniu ''Programu Erlangeńskiego'' Feliksa Kleina, przez geometrię afinicznąrozumie się geometrię niezmiennicząze względu na grupę przekształceń (odwzorowań) afinicznych. Jedynymi izometriami wśród przekształceń afinicznych sąpółobroty i translacje. Jednokładności sąrównież przekształceniami afinicznymi. Twierdzeniami afinicznymi w geometrii Euklidesa sąte, które zachowująswojąprawdziwość przy rzutowaniu równoległym z jednej płaszczyzny na drugą. Obok przesunięć, półobrotów i jednokładności przekształceniami afinicznymi sąrozciąganie i zgniatanie wzdłuż jakiejś prostej. Te ostatnie deformacje mogąbyć efektem np. rzutowań równoległych. W ujęciu Feliksa Kleina geometria afiniczna jest pewnągrupąodwzorowań pośredniąmiędzy grupąpodobieństw a grupąprzekształceń rzutowych.

Nowy!!: Kombinacja afiniczna i Geometria afiniczna · Zobacz więcej »

Geometria euklidesowa

Szkoła Euklidesa w Atenach(Obraz Raffaello Sanzio, 1509) Strona z dzieła ''Elementy'' Geometria euklidesowa – klasyczna odmiana geometrii opisana po raz pierwszy przez Euklidesa w dziele Elementy (z IV w. p.n.e.). Zebrał on całąówczesnąwiedzę matematycznąznanąGrekom, dziś jego dzieło przedstawia się jako pierwsząznanąaksjomatyzację w historii matematyki.

Nowy!!: Kombinacja afiniczna i Geometria euklidesowa · Zobacz więcej »

Kombinacja liniowa

Kombinacja liniowa – jedno z podstawowych pojęć algebry liniowej i powiązanych z niądziałów matematyki.

Nowy!!: Kombinacja afiniczna i Kombinacja liniowa · Zobacz więcej »

Kombinacja stożkowa

Kombinacja stożkowa (ang. conical combination) – kombinacja liniowa (skończonej liczby) elementów v_1, v_2, \dots, v_n w rzeczywistej przestrzeni wektorowej V, o tej własności, że wszystkie współczynniki \alpha_1, \dots, \alpha_n sąnieujemne, tj.

Nowy!!: Kombinacja afiniczna i Kombinacja stożkowa · Zobacz więcej »

Kombinacja wypukła

Kombinacja wypukła skończonej liczby elementów v_1, v_2, \dots, v_n przestrzeni wektorowej V, – kombinacja liniowa \sum_^n \alpha_iv_i tych elementów taka, że jej współczynniki sąnieujemne: oraz ich suma wynosi 1.

Nowy!!: Kombinacja afiniczna i Kombinacja wypukła · Zobacz więcej »

Otoczka wypukła

Otoczka wypukła, powłoka wypukła, uwypuklenie podzbioru przestrzeni liniowej – najmniejszy (w sensie inkluzji) zbiór wypukły zawierający ten podzbiór.

Nowy!!: Kombinacja afiniczna i Otoczka wypukła · Zobacz więcej »

Przekształcenie afiniczne

Fraktal podobny do liścia paproci: każdy z liści jest związany z pozostałymi poprzez transformację afiniczną. Np. liść czerwony można przetransformować w liść ciemnoniebieski lub jasnoniebieski poprzez złożenie odbić, obrotów, skalowania i translacji. Transformacja afiniczna płaszczyzny 2D może być wykonana w 3 wymiarach. Translacja jest wykonywana poprzez przesunięcie wzdłuż osi z, obrót – poprzez obrót wokół osi z. Przekształcenie afiniczne (z łaciny, affinis, „powiązany z”), powinowactwo lub pokrewieństwo – przekształcenie geometryczne przestrzeni euklidesowych, odwzorowujące odcinki na odcinki, proste w proste, płaszczyzny w płaszczyzny, linie równoległe w linie równoległe.

Nowy!!: Kombinacja afiniczna i Przekształcenie afiniczne · Zobacz więcej »

Przestrzeń afiniczna

Dolna płaszczyzna (zielona) P_1 jest przestrzeniąwektorowązanurzonąw \mathbbR^3, ale górna płaszczyzna (niebieska) P_2 już niąnie jest, bowiem dla dowolnych wektorów \mathbfa,\mathbfb \in P_2 mamy \mathbfa+\mathbfb \notin P_2. Jednakże P_2 jest prostym przykładem przestrzeni afinicznej: różnica \mathbfa-\mathbfb dwóch jej elementów jest wektorem należącym do P_1 (jest to wektor przemieszczenia punktu \mathbfa do punktu \mathbfb). Odcinki w 2-wymiarowej przestrzeni afinicznej Przestrzeń afiniczna – abstrakcyjna struktura uogólniająca te własności przestrzeni euklidesowych, które sąniezależne od pojęć odległości i kąta.

Nowy!!: Kombinacja afiniczna i Przestrzeń afiniczna · Zobacz więcej »

Przestrzeń euklidesowa

Przestrzeń euklidesowa – przestrzeń opisywana przez geometrię euklidesową.

Nowy!!: Kombinacja afiniczna i Przestrzeń euklidesowa · Zobacz więcej »

Przestrzeń liniowa

Przestrzeń liniowa to zbiór elementów – zwanych ''wektorami'' – które mogąbyć dodawane i skalowane. przestrzeni Hilberta – jednej z odmian przestrzeni liniowych Przestrzeń liniowa, przestrzeń wektorowa – rodzaj struktury algebraicznej złożonej z dwóch zbiorów oraz dwóch działań: wewnętrznego i zewnętrznego.

Nowy!!: Kombinacja afiniczna i Przestrzeń liniowa · Zobacz więcej »

Punkt stały

Funkcja rzeczywista zmiennej rzeczywistej mająca trzy punkty stałe Punkt stały odwzorowania pewnego zbioru w siebie – argument funkcji, dla którego jej wartość jest mu równa.

Nowy!!: Kombinacja afiniczna i Punkt stały · Zobacz więcej »

Wektor

Ilustracja wektora Wektor – obiekt matematyczny opisywany za pomocąwielkości: modułu (nazywanego też – zdaniem niektórych niepoprawnie – długościąlub (wartością), kierunku wraz ze zwrotem (określającym orientację wzdłuż danego kierunku); istotny przede wszystkim w matematyce elementarnej, inżynierii i fizyce. Wiele działań algebraicznych na liczbach rzeczywistych ma swoje odpowiedniki dla wektorów: mogąbyć one dodawane, odejmowane, mnożone przez liczbę i odwracane. Operacje te spełniająznane prawa algebraiczne: przemienności, łączności, rozdzielności (odejmowanie traktowane jest jako szczególny przypadek dodawania). Suma dwóch wektorów o tym samym początku może być znaleziona geometrycznie za pomocąreguły równoległoboku. Mnożenie przez liczbę, w tym kontekście nazywanązwykle skalarem, zmienia moduł wektora, tzn. rozciąga go lub ściska zachowując jego kierunek oraz jeżeli liczba jest dodatnia zachowuje zwrot, a gdy ujemna zmienia zwrot wektora. Współrzędne kartezjańskie sąspójnym środkiem opisu wektorów i operacji na nich. Wektor staje się ciągiem liczb rzeczywistych nazywanymi składowymi skalarnymi. Dodawanie wektorów i mnożenie wektora przez skalar sąwykonywane składowa po składowej (zob. przestrzeń współrzędnych). Wektory odgrywająważnąrolę w fizyce: prędkość oraz przyspieszenie poruszającego się obiektu oraz siła działająca na ciało mogąbyć opisane za pomocąwektorów. Wiele innych wielkości fizycznych może być rozpatrywanych jako wektory. Matematyczna reprezentacja wektora fizycznego zależy od układu współrzędnych wykorzystanego do jego opisu. Inne obiekty podobne wektorom, które opisująwielkości fizyczne i ulegająprzekształceniom w podobny sposób wraz ze zmianąukładu współrzędnych to pseudowektory i tensory.

Nowy!!: Kombinacja afiniczna i Wektor · Zobacz więcej »

TowarzyskiPrzybywający
Hej! Jesteśmy na Facebooku teraz! »